Science Advances:具有级联光动力疗法和营养免疫疗法协同作用的精准纳米系统可高效抗生物被膜感染
bionanoer bionanoer 2023-07-21

图片.png 

耐甲氧西林金黄色葡萄球菌(MRSA)可以利用生物被膜逃避宿主免疫系统和抗菌药物的杀伤作用而导致顽固性感染,严重威胁人类健康和畜牧业发展。由于存在非特异性分布和生物被膜屏障,常规抗菌药所发挥的疗效常常非常低下,并极易诱导细菌耐药性。因此,迫切需要开发具有高效抗生物被膜作用且不易诱导耐药性的新型治疗策略。华中农业大学谢书宇和陈冬梅以PCN-224为光动力平台,开发了一种靶向耐甲氧西林金黄色葡萄球菌生物被膜的精氨酸驱动的光动力与营养免疫协同治疗的复合纳米系统,并系统研究了该复合纳米系统对生物被膜的杀伤活性及其作用机制。

 

本文要点

(1)本研究设计了基于光动力触发的级联反应核壳复合纳米系统(Arg-PCN@Gel),可以靶向MRSA的自溶素(atl)而高效黏附于生物被膜,并在MRSA感染部位高表达的金属基质酶的作用下释放内核Arg-PCN。

(2)在红光照射下,Arg-PCN@Gel可以通过级联反应产生ROS、RNOS等多种活性物质,并驱动精氨酸产生NO信号分子增强宿主免疫反应,协同预防和杀伤生物膜。

(3)研究显示,复合纳米系统主要通过下调cidA、icaA、arsR、copZ、codY、ccpA等来抑制MRSA的精氨酸代谢系统、金属元素代谢、能量利用效率、双组分系统和EPS的合成,以防止生物膜产生。同时,利用NO高效破坏成熟的生物膜屏障,促进ROS和ONOO-渗透到生物膜中,破坏生物被膜内MRSA的细胞壁和细胞膜。

(4)在小鼠生物被膜感染模型中,Arg-PCN@Gel可以靶向生物被膜感染部位并持续停留15天。在治疗初期,复合纳米系统可诱导促炎因子TNF-α和iNOS的高表达,并驱动精氨酸产生大量NO以发挥抗菌效果;在治疗后期,逐渐积累的NO不仅可清除细菌,还可诱导了IL-4和Arg-1等抗炎因子的表达,利用精氨酸从促炎阶段转化为抗炎阶段来促进伤口愈合。

图片.png 

Aoxue Zhang, et al. Targeting and arginine-driven synergizing photodynamic therapy with nutritional immunotherapy nanosystems for combating MRSA biofilms. Science Advances. 2023

DOI:10.1126/sciadv.adg9116

https://www.science.org/doi/10.1126/sciadv.adg9116


加载更多
684

版权声明:

1) 本文仅代表原作者观点,不代表本平台立场,请批判性阅读! 2) 本文内容若存在版权问题,请联系我们及时处理。 3) 除特别说明,本文版权归游戏下注电竞平台 工作室所有,翻版必究!
bionanoer

聚焦纳米材料科学,擅长领域为水凝胶/纳米材料合生物医学工程。

发布文章:893篇 阅读次数:521231
游戏下注电竞平台
你好测试
copryright 2016 游戏下注电竞平台 闽ICP备16031428号-1

关注公众号

Baidu
map